فتوکاتالیست‌های ناهمگن در واکنش‌های آلی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری گروه شیمی، پردیس علوم، دانشگاه تهران.

2 دانشیار گروه شیمی، پردیس علوم، دانشگاه تهران.

چکیده

در این مقاله مروری، پس از معرفی اجمالی انواع مختلف مواد و سیستم‌های مورد استفاده به عنوان فتوکاتالیست، مبانی و پیشرفت‌ها در زمینه واکنش‌‌های آلی انتخابی با استفاده از فتوکاتالیست‌های ناهمگن مورد بررسی قرار می‌‌گیرد. چندین واکنش فتوکاتالیستی شامل اکسایش، کاهش و کوپلینگ با بازده و انتخاب‌گری بالا و بدون استفاده از مواد شیمیایی خطرناک و مضر و حداقل محصولات جانبی ناخواسته قابل پیش‌برد هستند. برخی فرایند‌‌های پیچیده چندمرحله‌ای برای تولید ترکیبات ارزشمند را می‌‌توان با استفاده از فتوکاتالیست‌‌ها به صورت تک‌ظرفی و ساده انجام داد. واکنش‌‌های فتوکاتالیستی (خصوصاً از نوع ناهمگن به علت سهولت جداسازی از مخلوط واکنش) توانایی بالقوه فوق‌العاده‌‎ای برای تولید مواد آلی پیچیده و با ارزش افزوده بالا به صورت مقرون‌به‌صرفه و دوست‌دار محیط زیست را دارند. توانایی چند نوع پرکاربرد از فتوکاتالیست‌های ناهمگن در سنتز‌های آلی به صورت خلاصه تبیین خواهد شد.

کلیدواژه‌ها


[1]        Ravelli, D., M. Fagnoni, and A. Albini, Photoorganocatalysis. What for? Chemical Society Reviews, 2013. 42(1): p. 97-113.
 
[2]        Bach, T. and J.P. Hehn, Photochemical reactions as key steps in natural product synthesis. Angewandte Chemie International Edition, 2011. 50(5): p. 1000-1045.
 
[3]        Lang, X., X. Chen, and J. Zhao, Heterogeneous visible light photocatalysis for selective organic transformations. Chemical Society Reviews, 2014. 43(1): p. 473-486.
 
[4]        Palmisano, G., et al., Advances in selective conversions by heterogeneous photocatalysis. Chemical Communications, 2010. 46(38): p. 7074-7089.
 
[5]        Prier, C.K., D.A. Rankic, and D.W. MacMillan, Visible light photoredox catalysis with transition metal complexes: Applications in organic synthesis. Chemical reviews, 2013. 113(7): p. 5322-5363.
 
[6]        Hoffmann, M.R., et al., Environmental applications of semiconductor photocatalysis. Chemical reviews, 1995. 95(1): p. 69-96.
 
[7]        Fujishima, A., T.N. Rao, and D.A. Tryk, Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2000. 1(1): p. 1-21.
 
[8]        Maldotti, A., A. Molinari, and R. Amadelli, Photocatalysis with organized systems for the ox
 
ofunctionalization of hydrocarbons by O2. Chemical Reviews, 2002. 102(10): p. 3811-3836.
 
[9]        Fox, M.A. and M.T. Dulay, Heterogeneous photocatalysis. Chemical reviews, 1993. 93(1): p. 341-357.
 
[10]      Fagnoni, M., et al., Photocatalysis for the Formation of the C− C Bond. Chemical Reviews, 2007. 107(6): p. 2725-2756.
 
[11]      Shiraishi, Y. and T. Hirai, Selective organic transformations on titanium oxide-based photocatalysts. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2008. 9(4): p. 157-170.
[12]      Tachikawa, T., M. Fujitsuka, and T. Majima, Mechanistic insight into the TiO2 photocatalytic reactions: design of new photocatalysts. The Journal of Physical Chemistry C, 2007. 111(14): p. 5259-5275.
 
[13]      Shchukin, D.G. and D.V. Sviridov, Photocatalytic processes in spatially confined micro-and nanoreactors. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2006. 7(1): p. 23-39.
 
[14]      Matsuoka, M. and M. Anpo, Local structures, excited states, and photocatalytic reactivities of highly dispersed catalysts constructed within zeolites. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2003. 3(3): p. 225-252.
 
[15]      Yoshida, H., Active sites of silica-based quantum photocatalysts for non-oxidative reactions. Catalysis surveys from Asia, 2005. 9(1): p. 1-9.
 
[16]      Linic, S., P. Christopher, and D.B. Ingram, Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nature materials, 2011. 10(12): p. 911-921.
 
[17]      Chen, X., et al., Visible‐Light‐Driven Oxidation of Organic Contaminants in Air with Gold Nanoparticle Catalysts on Oxide Supports. Angewandte Chemie, 2008. 120(29): p. 5433-5436.
 
[18]      Wang, P., et al., Ag@ AgCl: a highly efficient and stable photocatalyst active under visible light. Angewandte Chemie International Edition, 2008. 47(41): p. 7931-7933.
 
[19]      Wang, X., et al., A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nature materials, 2009. 8(1): p. 76-80.
 
[20]      Wang, X., et al., Metal‐Containing Carbon Nitride Compounds: A New Functional Organic–Metal Hybrid Material. Advanced Materials, 2009. 21(16): p. 1609-1612.
 
[21]      Thomas, A., et al., Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. Journal of Materials Chemistry, 2008. 18(41): p. 4893-4908.
 
[22]      Yan, S., Z. Li, and Z. Zou, Photodegradation performance of g-C3N4 fabricated by directly heating melamine. Langmuir, 2009. 25(17): p. 10397-10401.
 
[23]      Hagfeldt, A., et al., Dye-sensitized solar cells. Chemical reviews, 2010. 110(11): p. 6595-6663.
[24]      واکنشگرهای اکسایش و کاهش در شیمی آلی" انتشارات دانشگاه تهران- سال 1396
 
[25]      Mohamed, O.S., A.E.-A.M. Gaber, and A. Abdel-Wahab, Photocatalytic oxidation of selected aryl alcohols in acetonitrile. Journal of Photochemistry and Photobiology A: Chemistry, 2002. 148(1): p. 205-210.
 
[26]      Pillai, U.R. and E. Sahle–Demessie, Selective oxidation of alcohols in gas phase using light-activated titanium dioxide. Journal of Catalysis, 2002. 211(2): p. 434-444.
 
[27]      Palmisano, G., et al., Photocatalytic Selective Oxidation of 4‐Methoxybenzyl Alcohol to Aldehyde in Aqueous Suspension of Home‐Prepared Titanium Dioxide Catalyst. Advanced Synthesis & Catalysis, 2007. 349(6): p. 964-970.
 
[28]      Higashimoto, S., et al., Selective photocatalytic oxidation of benzyl alcohol and its derivatives into corresponding aldehydes by molecular oxygen on titanium dioxide under visible light irradiation. Journal of Catalysis, 2009. 266(2): p. 279-285.
 
[29]      Higashimoto, S., et al., Characteristics of the charge transfer surface complex on titanium (IV) dioxide for the visible light induced chemo-selective oxidation of benzyl alcohol. RSC Advances, 2012. 2(2): p. 669-676.
 
[30]      Li, C.-J., et al., High selectivity in visible-light-driven partial photocatalytic oxidation of benzyl alcohol into benzaldehyde over single-crystalline rutile TiO 2 nanorods. Applied Catalysis B: Environmental, 2012. 115: p. 201-208.
 
[31]      Shishido, T., et al., Mechanism of photooxidation of alcohol over Nb2O5. The Journal of Physical Chemistry C, 2009. 113(43): p. 18713-18718.
 
[32]      Tsukamoto, D., et al., Gold nanoparticles located at the interface of anatase/rutile TiO2 particles as active plasmonic photocatalysts for aerobic oxidation. Journal of the American Chemical Society, 2012. 134(14): p. 6309-6315.
 
[33]      Naya, S.-i., A. Inoue, and H. Tada, Self - assembled heterosupramolecular visible light photocatalyst consisting of gold nanoparticle-loaded titanium (IV) dioxide and surfactant. Journal of the American Chemical Society, 2010. 132(18): p. 6292-6293.
 
[34]      Tanaka, A., K. Hashimoto, and H. Kominami, Selective photocatalytic oxidation of aromatic alcohols to aldehydes in an aqueous suspension of gold nanoparticles supported on cerium (IV) oxide under irradiation of green light. Chemical Communications, 2011. 47(37): p. 10446-10448.
 
[35]      Tanaka, A., K. Hashimoto, and H. Kominami, Preparation of Au/CeO2 exhibiting strong surface plasmon resonance effective for selective or chemoselective oxidation of alcohols to aldehydes or ketones in aqueous suspensions under irradiation by green light. Journal of the American Chemical Society, 2012. 134(35): p. 14526-14533.
 
[36]      Maldotti, A., et al., Photoinduced reactivity of Au–H intermediates in alcohol oxidation by gold nanoparticles supported on ceria. Chemical Science, 2011. 2(9): p. 1831-1834.
 
[37]      Hallett-Tapley, G.L., et al., Plasmon-mediated catalytic oxidation of sec-phenethyl and benzyl alcohols. The Journal of Physical Chemistry C, 2011. 115(21): p. 10784-10790.
 
[38]      Sarina, S., et al., Enhancing catalytic performance of palladium in gold and palladium alloy nanoparticles for organic synthesis reactions through visible light irradiation at ambient temperatures. Journal of the American Chemical Society, 2013. 135(15): p. 5793-5801.
 
[39]      Sugano, Y., et al., Supported Au–Cu Bimetallic Alloy Nanoparticles: An Aerobic Oxidation Catalyst with Regenerable Activity by Visible‐Light Irradiation. Angewandte Chemie International Edition, 2013. 52(20): p. 5295-5299.
 
[40]      Su, F., et al., mpg-C3N4-catalyzed selective oxidation of alcohols using O2 and visible light. Journal of the American Chemical Society, 2010. 132(46): p. 16299-16301.
 
[41]      Zheng, Z. and X. Zhou, Metal‐Free Oxidation of α‐Hydroxy Ketones to 1, 2‐Diketones Catalyzed by Mesoporous Carbon Nitride with Visible Light. Chinese Journal of Chemistry, 2012. 30(8): p. 1683-1686.
 
[42]      Zhang, M., et al., Visible‐Light‐Induced Aerobic Oxidation of Alcohols in a Coupled Photocatalytic System of Dye‐Sensitized TiO2 and TEMPO. Angewandte Chemie, 2008. 120(50): p. 9876-9879.
 
[43]      Jeena, V. and R.S. Robinson, Convenient photooxidation of alcohols using dye sensitised zinc oxide in combination with silver nitrate and TEMPO. Chemical Communications, 2012. 48(2): p. 299-301.
 
[44]      Lang, X., et al., Selective formation of imines by aerobic photocatalytic oxidation of amines on TiO2. Angewandte Chemie International Edition, 2011. 50(17): p. 3934-3937.
 
[45]      Lang, X., et al., Visible‐Light‐Induced Selective Photocatalytic Aerobic Oxidation of Amines into Imines on TiO2. Chemistry–A European Journal, 2012. 18(9): p. 2624-2631.
 
[46]      Furukawa, S., et al., Photocatalytic oxidation of alcohols over TiO2 covered with Nb2O5. Acs Catalysis, 2011. 2(1): p. 175-179.
 
[47]      Rueping, M., et al., Light‐Mediated Heterogeneous Cross Dehydrogenative Coupling Reactions: Metal Oxides as Efficient, Recyclable, Photoredox Catalysts in C C Bond‐Forming Reactions. Chemistry–A European Journal, 2012. 18(12): p. 3478-3481.
 
[48]      Naya, S.-i., K. Kimura, and H. Tada, One-step selective aerobic oxidation of amines to imines by gold nanoparticle-loaded rutile titanium (IV) oxide plasmon photocatalyst. Acs Catalysis, 2012. 3(1): p. 10-13.
 
[49]      Fujihira, M., Y. Satoh, and T. Osa, Heterogeneous photocatalytic oxidation of aromatic compounds on TiO2. Nature, 1981. 293(5829): p. 206-208.
 
[50]      Chen, J., L. Eberlein, and C.H. Langford, Pathways of phenol and benzene photooxidation using TiO 2 supported on a zeolite. Journal of Photochemistry and Photobiology A: Chemistry, 2002. 148(1): p. 183-189.
 
[51]      Park, H. and W. Choi, Photocatalytic conversion of benzene to phenol using modified TiO 2 and polyoxometalates. Catalysis Today, 2005. 101(3): p. 291-297.
 
[52]      Park, H. and W. Choi, Photoelectrochemical investigation on electron transfer mediating behaviors of polyoxometalate in UV-illuminated suspensions of TiO2 and Pt/TiO2. The Journal of Physical Chemistry B, 2003. 107(16): p. 3885-3890.
[53]      Shiraishi, Y., N. Saito, and T. Hirai, Adsorption - driven photocatalytic activity of mesoporous titanium dioxide. Journal of the American Chemical Society, 2005. 127(37): p. 12820-12822.
 
[54]      Palmisano, G., et al., Selectivity of hydroxyl radical in the partial oxidation of aromatic compounds in heterogeneous photocatalysis. Catalysis today, 2007. 122(1): p. 118-127.
 
[55]      Palmisano, G., et al., Influence of the substituent on selective photocatalytic oxidation of aromatic compounds in aqueous TiO 2 suspensions.Chemical communications  , 2006(9) : p . 1012-1014.
 
[56]      Ide, Y., et al., Sunlight-induced efficient and selective photocatalytic benzene oxidation on TiO 2-supported gold nanoparticles under CO 2 atmosphere. Chemical Communications, 2011. 47(41): p. 11531-11533.
 
[57]      Ide, Y., M. Matsuoka, and M. Ogawa, Efficient visible-light-induced photocatalytic activity on gold-nanoparticle-supported layered titanate. Journal of the American Chemical Society, 2010. 132(47): p. 16762-16764.
 
[58]      Zheng, Z., et al., Facile in situ synthesis of visible-light plasmonic photocatalysts M@ TiO 2 (M= Au, Pt, Ag) and evaluation of their photocatalytic oxidation of benzene to phenol. Journal of Materials Chemistry, 2011. 21(25): p. 9079-9087.
 
[59]      Chen, X., et al., Fe-g-C3N4-catalyzed oxidation of benzene to phenol using hydrogen peroxide and visible light. Journal of the American Chemical Society, 2009. 131(33): p. 11658-11659.
 
[60]      Soana, F., et al., Titanium dioxide photocatalyzed oxygenation of naphthalene and some of its derivatives. Journal of the Chemical Society, Perkin Transactions 2, 2000(4): p. 699-704.
 
[61]      Cermenati, L., A. Albini, and C. Richter, Solar light induced carbon–carbon bond formation via TiO2 photocatalysis. Chemical communications, 1998(7): p. 805-806.
 
[62]      Cermenati, L., et al., Titanium dioxide photocatalysis of adamantane. Tetrahedron, 2003. 59(34): p. 6409-6414.
 
[63]      Higashida, S., et al., Synthesis of a coumarin compound from phenanthrene by a TiO 2-photocatalyzed reaction. Chemical communications, 2006(26): p. 2804-2806.