[1]. Lupi, C. & Pilone, D. (2004). “In (III) hydrometallurgical recovery from secondary materials by solvent extraction”. J. Environ. Chem. Eng. 2, 100-104.
[2]. Gałuszka, A., Migaszewski, Z. & Namiesnik, J. (2013). “The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices”. Trend in Anal chem. 50, 78-84.
[3]. Hulme, C. & Gore, V. (2003). “Multi-component reactions: emerging chemistry in drug discovery from xylocain to crixivan”. Curr. Med. Chem. 10, 51-80.
[4]. Domling, A. & Ugi, I. (2000). “Multicomponent Reactions with Isocyanides”. Angew. Chem., Int. Ed. 39, 3168-3210.
[5]. Biggs-Houck, J.E., Younai, A. & Shaw, J.T. (2010). “Recent advances in multicomponent reactions for diversityoriented synthesis”. Curr. Opin. Chem. Biol. 14, 371-382.
[6]. Michael, C. & Das Sarma, K. (2004). “Multicomponent Reactions Are Accelerated in Water”. J. Am. Chem. Soc. 126, 444-445.
[7]. Poor Heravi, M.R. & Fakhr, F. (2011). “Ultrasound-promoted synthesis of 2-amino-6-(arylthio)-4-arylpyridine-3,5-dicarbonitriles using ZrOCl2·8H2O/NaNH2 as the catalyst in the ionic liquid [bmim]BF4 at room temperature”. Tetrahedron Lett. 5, 6779-6782.
[8]. Banitaba, S.H., Safari, J. & Dehghan Khalili. S. (2013). “Ultrasound promoted one-pot synthesis of 2-amino-4,8-dihydropyrano[3,2-b]pyran-3-carbonitrile scaffolds in aqueous media: A complementary ‘green chemistry’ tool to organic synthesis”. Ultrason. Sonochem. 20, 401-407.
[9]. Wangelin, V., Neumann, A. J., Godes. H.D., Klaus, S. & Beller, M. (2003). “Multicomponent Coupling Reactions for Organic Synthesis: Chemoselective Reactions with Amide–Aldehyde Mixtures”. Chem. Eur. J. 9, 4286-4294.
[10]. Matus, K.J.M., Xiao, X. & Zimmerman J.B. (2012). “Green chemistry and green engineering in China: drivers, policies and barriers to innovation”. J. Clean. Prod. 32, 193-203.
[11]. Dunn, P.J. (2012). “The importance of Green Chemistry in Process Research and Development”. Chem. Soc. Rev. 41, 1452-1461.
[12]. Tundo, P., Anastas, P., StC. Black, D., Breen, J. Collins, T., Memoli, S., Miyamoto, J., Polyakoff. M., Anastas, P.T. & Warner, J.C. (1998). Green Chemistry: Theory and Practice, New York. 7. 112-117.
[13]. Anastas, P.T. & Zimmerman, J. B. (2003). “Peer Reviewed: Design Through the 12 Principles of Green Engineering”. Environ. Sci. Technol. 37, 94A-101A.
[14]. Cui, Z., Beach, E.S. & Anastas, P. T. (2011). “Green chemistry in China”. Pure.Appl. Chem. 83. 1379-1390.
[15]. Galuszka, A., Migaszewsk, Z. & Namies nik, J. (2013). “The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices”. Trends in Ana. chem. 50. 78-84.
[16]. Clark, J.H. (1999). “Green Chemistry.; challenges and opportunities”. Green Chemistry. 7. 1-8
[17]. Ellis, G.P., Weissberger, A. & Taylor, E.C. (Eds.), (1977). John Wiley, New York, NY. 11, 139-142.
[18]. Hafez, E.A., Elnagdi, M.H., Elagemey, A.G.A. & El-Taweel, F.M.A.A. (1987). “Nitriles in Heterocyclic Synthesis: Novel Synthesis of Benzo[c]coumarin and of Benzo[c] pyrano[3,2-c] quinoline Derivatives”. Heterocycles. 26, 903-907.
[19]. Khafagy, M.M., El-Wahas, A.H.F.A., Eid, F.A. & El-Agrody, A.M. (2002). “Synthesis of halogen derivatives of benzo[h]chromene and benzo[a]anthracene with promising antimicrobial activities”. Farmaco. 57, 715-722.
[20]. Smith, W.P., Sollis, L.S., Howes, D.P., Cherry, C.P., Starkey, D.I. & Cobley, N.K. (1998). “Dihydropyrancarboxamides Related to Zanamivir: A New Series of Inhibitors of Influenza Virus Sialidases. 1. Discovery, Synthesis, Biological Activity, and Structure−Activity Relationships of 4-Guanidino- and 4-Amino-4H-pyran-6-carboxamides”. J. Medi. Chem. 41. 787-797.
[21]. Hiramoto, K., Nasuhara, A., Michiloshi, K., Kato, T. & Kikugawa, K. (1997). “DNA strand-breaking activity and mutagenicity of 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one (DDMP), a Maillard reaction product of glucose and glycine”. Mutat. Res. 395. 47-56.
[22]. Bianchi, G. & Tava, A. (1987). “Synthesis of (2R)-(+)-2,3-Dihydro-2,6-dimethyl-4H-pyran-4-one, a Homologue of Pheromones of a Species in the Hepialidae Family”. Agricultural and Biolog Chem. 51, 2001-2002.
[23]. Eiden, F. & Denk, F., (1991). ‘Synthesis of CNS-activity of pyran derivatives: 6,8-dioxabicyclo(3,2,1)octane”. Arch Pharm. 324. 353-345.
[24]. Green, G.R., Evans, J.M., Vong, A.K., Katritzky, A.R., Rees, C.W. & Scriven E.F.V. (Eds.). (1995). Comprehensive Heterocyclic Chem. 5. 469-472.
[25]. Yu, L.Q., Liu, F. & You, Q.D. (2009). “One-Pot Synthesis of Tetrahydrobenzo[b]pyran Derivatives Catalyzed by Amines in Aqueous Media”. Org. Prep. Proced. 41, 77-82.
[26]. Khaksar, S., Rouhollahpour, A. & Mohammadzadeh Talesh, S. (2012). “A facile and efficient synthesis of 2-amino-3-cyano-4H-chromenes and tetrahydrobenzo [b]pyrans using 2,2,2-trifluoroethanol as a metal-free and reusable medium”. J. Flou. Chem. 141, 11-15.
[27]. Davoodnia, A., Allameh, S., Fazli, S. & T-Hoseini, N. (2011). “One-pot synthesis of 2-amino-3-cyano-4-arylsubstituted tetrahydrobenzo [b] pyrans catalysed by silica gel-supported polyphosphoric acid (PPA-SiO2) as an efficient and reusable”. Chem Papers. 65, 714-720.
[28]. Safari, J., Banitaba, S.H. & Dehghankhalili S. (2013). “Ultrasound promoted one-pot synthesis of 2-amino-4,8-dihydropyrano[3,2-b] pyran-3-carbonitrile scaffolds in aqueous media: A complementary ‘green chemistry’ tool to organic synthesis”. Ultrason Sonochem. 20, 401-407.
[29].A Sanchez, F., Hernandez, P.C., Cruz, Y., Alcaraz, J., Tamariz, F. & Vazquez. M.A. (2012). “Infrared Irradiation–Assisted Multicomponent Synthesis of 2–Amino–3–cyano–4H–pyran Derivatives”. J. Mex. Chem. Soc. 56, 121-127.
[30]. Kulesza, A., Ebetino, F.H., Mishra, R.K., Cross-Doersen, D. & Mazur, A.W. (2003). “Synthesis of 2,4,5-Trisubstituted Tetrahydropyrans as Peptidomimetic Scaffolds for Melanocortin Receptor Ligands”. Organic Lett. 5, 1163-1166.
[31]. Armesto, D., Horspool, W.M., Martin, N., Ramos, A. & Seoane, C. (1987). “A novel photochemical ring contraction of 4H-pyrans. A new route to selectively substituted cyclobutenes”. J. Chem. Soc., Chem. Commun. 54, 1231-1232.
[32]. Abdel-Latif, F.F. (1990). Indian Journal of Chem. 29B. 664.
[33]. Kemnitzer, W., Kasibhatla, S., Jiang, S., Zhang, H., Zhao, J., Jia, S., Xu, L., Crogan- Grundy, C., Denis, R., Barriault, N., Vaillancourt, L., Charron, S., Dodd, J., Attardo, G., Labrecque, D., Lamothe, S., Gourdeau, H., Tseng, B., Drewea, J. & Caia, S.X. (2005). “Discovery of 4-aryl-4H-chromenes as a new series of apoptosis inducers using a cell- and caspase-based high-throughput screening assay. 2. Structure-activity relationships of the 7- and 5-, 6-, 8-positions”. Bioorganic and Medi Chem Lett. 15. 4745-4751.
[34]. Konkoy, C.S., Fick, D.B., Cai, S.X., Lan, N.C. & Keana, J.F.W. (2001). “Substituted 5-oxo-5,6,7,8-tetrahydro-4H-1-benzopyrans and benzothiopyrans and the use thereof as potentiators of AMPA”. Chem. Abstr. 134. 29313-29315.
[35]. Hu, H., Qiu, F.i., Ying, A., Yang, J. & Meng, H. (2014). “An Environmentally Benign Protocol for Aqueous Synthesis of Tetrahydrobenzo[b]Pyrans Catalyzed by Cost-Effective Ionic Liquid”. Int. J. Mol. Sci. 15, 6898-6909.
[36]. Bonsignore, L., Loy, G., Secci, D. & Calignano, A. (1993). “Synthesis and pharmacological activity of 2-oxo-(2H) 1-benzopyran-3-carboxamide derivatives”. Eur. J. Med. Chem. 28, 517–520