پیش‌بینی خواص الکترونی و طیفی حد واسط‌های نایترنی تولیدشده از تجزیه حرارتی ماده منفجره سیانوریک‌تری‌آزید با استفاده از محاسبات DFT و MP2

نوع مقاله : مقاله پژوهشی

نویسنده

استادیار گروه شیمی آلی، دانشگاه دامغان، ایران.

چکیده

سیانوریک­تری­آزید (C3N12) یک ماده منفجره اولیه آلی دوستدار محیط‌زیست و با سمیت کم است. تجزیه حرارتی این ترکیب باعث تولید تعدادی از حد واسط‌های نایترنی می­شود که شناسایی این ترکیبات برای کشف مولکول‌های پرانرژی بسیار واکنش­پذیر مهم است. در این مقاله از نظریه تابعی چگالی (DFT) روش B3LYP/6-311++G(2d,p) و نظریه اختلال مولر-پلست مرتبه دوم MP2/6-311++G(2d,p) برای مطالعه ساختار، پایداری و پیش­بینی خواص الکترونی و طیفی این حد واسط‌ها استفاده شد. این نتایج با داده­های تجربی گزارش‌شده در مورد برخی از این ترکیبات مقایسه گردید. بر اساس نتایج به دست آمده، حد واسط نایترنی 1 (C3N10) در پایدارترین حالت خود چندگانگی اسپین سه­تایی دارد؛ درحالی­که حد واسط‌های نایترنی 2 (C3N8) و 3 (C3N6) به ترتیب در حالت­های اسپینی پنج­تایی و هفت­تایی پایدارتر هستند. نمودارهای اوربیتال مولکولی و طیف­های­ زیرقرمز (IR) و رزونانس مغناطیس هسته نیتروژن-15 (15N NMR) محاسبه‌شده، اطلاعات مفیدی برای شناسایی این ترکیبات فراهم کرد. نوارهای جذبی قوی مربوط به ارتعاشات درون صفحه­ای حلقه تری­آزین در طیف­های IR حد واسط‌های 3-1 نسبت به مولکول سیانوریک­تری­آزید به سمت فرکانس­های پایین­تر جابجا شد. همچنین، نوارهای جذبی مربوط به ارتعاشات گروه آزید در طیف­ IR حد واسط نایترنی 3 به‌طور کامل محو گردید. طیف 15N NMR سیانوریک­تری­آزید چهار جابجایی­های شیمیایی متفاوت در 134، 248، 257 و ppm 271 دارد. پیک ظاهرشده در ppm 248 مربوط به اتم­های نیتروژن حلقه تری­آزین و سایر پیک­ها مربوط به اتم­های نیتروژن گروه آزید است. یک پیک جدید مربوط به اتم­ نیتروژن استخلاف­ نایترن در حوالی ppm 450 در حد واسط‌های 3-1 پدیدار گردید.

کلیدواژه‌ها


[1] Agrawal, J.P. (2010). “High Energy Materials: Propellants, Explosives and Pyrotechnics”. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.
[2] Brinck, T. (2013). “Green Energetic Materials”. Chichester: John Wiley & Sons, Ltd.
 
[3] Matyas, R. & Pachman, J. (2013). “Primary Explosives”. Berlin: Heidelberg Springer-Verlag.
 
[4] Agrawal, J.P. & Hodgson, R.D. (2007). “Organic Chemistry of Explosives”. Chichester: John Wiley & Sons Ltd.
 
[5] Nedel’ko, V.V. Korsunskii, B.L. Larikova, T.S. Chapyshev, S.V. Chukanov, N.V. Yuantsze, S. Thermal decomposition of 2,4,6-triazido-1,3,5-triazine, Russ. J. Phys. Chem. B 10 (2016) 570-575.
 
[6] Sato, T. Narazaki, A. Kawaguchi, Y. Niino, H. Bucher, G. Grote, D. Jens Wolff, J. Henning Wenk, H. Sander, W. Generation and Photoreactions of 2,4,6-Trinitreno-1,3,5-triazine, a Septet Trinitrene, J. Am. Chem. Soc. 126 (2004) 7846-7852.
 
[7] Singh, M.S. (2014), “Reactive Intermediates in Organic Chemistry: Structure, Mechanism, and Reactions”. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.
 
[8] Chapyshev, S. V. Six-membered aromatic polyazides: Synthesis and application, Molecules 20 (2015) 19142-19171.
 
[9] Abe, M. Bégué, D. Santos Silva, H. Dargelos, A. Wentrup, C. Triplet states of tetrazoles, nitrenes, and carbenes from matrix photolysis of tetrazoles, and phenylcyanamide as a source of phenylnitrene, J. Phys. Chem. A 122 (2018) 7276-7283.
 
[10] Wentrup, C. Flash Vacuum Pyrolysis of Azides, Triazoles, and Tetrazoles, Chem. Rev. 117 (2017) 4562-4623.
 
[11] Bachrach. S.M. (2014). “Computational Organic Chemistry”. New Jersey: John Wiley & Sons Inc.
 
[12] Zamani, M. Keshavarz, M.H. Thermochemical and detonation performances of boron-nitride analogues of organic azides and benzotrifuroxan as novel high energetic nitrogen-rich precursors, J. Iran. Chem. Soc. 12 (2015) 1077-1087.
 
[13] Zamani, M. Keshavarz, M.H. New NHNO2 substituted borazine-based energetic materials with high detonation performanc, Comput. Mater. Sci. 97 (2015) 295-303.
 
[14] Zamani, M. Keshavarz, M.H. Thermochemical and performance properties of NO2 substituted borazines as new energetic compounds with high thermodynamic stability, Cent. Eur. J. Energ. Mater. 11 (2014) 363-381.
 
[15] مهدی، ز. مطالعه ترمودینامیکی واکنش‌های تجزیه ماده منفجره سیانوریک-تری‌آزید با استفاده از نظریه تابعی چگالی. نشریه شیمی و مهندسی شیمی ایران، (1398) زیر چاپ (http://www.nsmsi.ir/article_36989 .html).
 
[16] Frisch, M.J. Trucks, G.W. Schlegel, H.B. Scuseria, G.E. et al. (2013). “Gaussian 09, Revi sion D.01”. Wallingford CT: Gaussian Inc.
 
[17] Cheeseman, J.R. Trucks, G.W. Keith, T.A. Frisch, M.J. comparison of models for calculating nuclear magnetic resonance shielding tensors, J. Chem. Phys. 104 (1996) 5497.
 
[18] Reimschuessel, H.K. McDevitt, N.T. Infrared spectra of some 1, 3, 5-triazine derivatives, J. Am. Chem. Soc. 82 (1960) 3756-3762.
 
[19] Shearer, S.J. Turrell, G.C. Bryant, J.I. Brooks III, R.L. Vibrational Spectra of Cyanuric Triazide, J. Chem. Phys. 48 (1968) 1138.
 
[20] Silverstein, R.M. Webster, F.X. Kiemle, D.J. (2005), “Spectrometric identification of organic compounds”. New York: John Wiley & Sons Ine. 7th Ed.