بررسی خواص کشش مذاب آلیاژهای سه‌گانه پلی الفینی (پلی پروپیلن/ پلی اتیلن/ اتیلن پروپیلن دی ان مونومر) به هدف بهبود فرایندپذیری پلی پروپیلن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار گروه شیمی، دانشگاه پیام نور، ایران.

2 کارشناسی ارشد شیمی، دانشگاه پیام نور، ایران.

چکیده

با توجه به خواص و قیمت مناسب، پلی پروپیلن (PP) یک پلیمر با ساختار آلی و با کاربرد بسیار در صنعت است، اما از آنجا که دارای الاستیسیته کم و استحکام مذاب ضعیف است، فرایند آن دشوار است. در این پژوهش، اثر آلیاژ کردن PP با پلی اتیلن با چگالی بالا (HDPE) و اتیلن پروپیلن دی­ان مونومر (EPDM) بر مقاومت آن در دمای بالا مطالعه شده است. آلیاژهای سه‌گانه PP/ HDPE/ EPDM دارای ترکیب درصدهای مختلف، با استفاده از اکسترودر دو ماردونه همسوگرد آزمایشگاهی تهیه شدند و اثر سرعت اعمال نیرو و دما بر خواص نمونه‌ها توسط آزمون­های کشش داغ و مقاومت وزنی صفحه داغ موردبررسی قرار گرفت. بدین ترتیب، اثرات ترکیب درصد آلیاژ و فرآیند، مانند دمای ورقه و سرعت کرنش بررسی شد. رفتار تنش- کرنش داغ در دماها و سرعت‌های کشش مختلف نشان داد که آلیاژ سه‌تایی، خواص مذاب PP را بهبود می‌بخشد. در تمام آلیاژها، مدول الاستیک، تنش تسلیم و مدول پس از تسلیم در مقایسه با PP خالص تغییرات مطلوبی داشتند. افزایش درجه حرارت و سرعت کشش (سرعت کرنش) اثرات قابل‌توجهی بر خواص کشش داغ داشت و به‌طور کل عملیات آلیاژسازی باعث بهبود کشش‌پذیری و مقاومت مذاب PP شد.

کلیدواژه‌ها


[1] Karger-Kocsis, J. (1999). Polypropylene, Kluwer Academic Publisher, London, 1st ed., 845-852.
 
[2] Throne, J.L. (1996). Technology of thermoforming, Carl hanser Verlag, Munich, 1st ed., chapter 9.
 
[3] Throne, JL. (1997). “Rapra Review Reports, Report 93”, Advances in Thermoforming, 8, 3-25.
 
[4] Hylton, D.C. & Cheng, C.Y. (1988). Plastics Engineering, 44, 55-57.
 
[5]. McHugh, K. & Ogale, K. (1990). “High Melt Strength Polypropylene for Melt Phase thermoforming”, SPE ANTEC, 452-455.
 
[6] Yoo, H.J. & Done, D. (1998). “Rheology of High Melt Strenght Polypropylene”, SPE ANTEC, 569-572.
[7] Lau, H.C., Bhattacharya, S.N. & Field, G.J. (2000). “Influence of rheological properties on the sagging of polypropylene and ABS sheet for thermoforming”, Polym. Eng. & Sci. 40, 1564-1570.
 
[8] Gotsis, A.D. & Zeevenhoven, B.L. (2004). “The Effect of Long Chain Branching on the Processability of polypropylene in Thermoforming”, Polym. Eng. and Sci., 44, 973-981.
 
[9] Auhl, D., Stange, J., Munstedt, H. & Beate, V. (2014). “Long Chain Branched polypropylene by electron beam irradiation and their rheological properties”, Macromolecules, 37, 9465-9472.
 
[10] Torres, F.G. & Bush, S.F. (2010). “Sheet extrusion and thermoforming of long glass fibre reinforced Polypropylene”, Composites Part A: Applied Science and Manufacturing, 31, 1289-1294.
 
[11] Bush, S.F., Torres, F.G. & Methven, J.M. (2009). “Rheological characterisation of descrete long glass fibre (LGF) reinforced Polypropylene”, Composites Part A: Applied Science and Manufacturing, 31, 1421-1431.
 
[12] Bhattacharyya, D., Bowis, M. & Jayaraman, K. (2013). “Thermoforming woodfibre-polypropylene composites sheet”, Composites Science and Technology, 63, 353-365.
 
[13] Takano, N., Zako, M., Fujitso, R. & Nishiyabu, K. (2014). “Study of large deformation characteristics of knitted fabric reinforced thermoplastic composites at forming themperature by digital image-based strain measurment technique”, Composites Science and Technology, 64, 2153-2163.
 
[14] Myers, J.H. (2005). “Polypropylene resins for sheeting and thermoforming”, Journal of Plastic film and sheeting, 1, 250-257.
 
[15] Malpass, V. & Kempthorn, J. (2016). “Setting conditions for polyolefin thermoforming”, Plastics Engineering, 42, 53-57.
 
[16] Machida, T. (2000). “Deep drawing of polypropylene sheets under differential heating conditions”, Polym. Eng. and Sci., 28, 405-412.
 
[17] Malpass, V., Kempthorn, J. & Dean, A. (2008). “Processing mineral filled polypropylenes for quality packaging”, ANTEC, 183-186.
 
[18] Malpass, V., Kempthorn, J. & Dean, A. (2012). “Estimating thermoforming behavior of mineral-filled polypropylenes”, Plastics Engineering, 45, 27-31.
 
[19] Maier, C. & Calafut, T. (1998). Polypropylene: The Definitive User's Guide and Databook, Plastics Design Library, New York, 1st ed., 234-235.
 
[20] Jacoby, P., Yang, J.C. & Kissel, W.J. (2004). “A new polypropylene resin with enhanced thermoformability”, SPE ANTEC, 865-871.
 
[21] Macauley, N., Harkin-Jones, E. & Murphy, W.R., (2006). “Thermoforming polypropylene”, Plastics Engineering, July 96, 33.
 
[22] Macauley, N., Harkin-Jones, E. & Murphy, W.R. (2017). “The influence of nucleating agents on the extrusion and thermoforming of polypropylene”, Polym. Eng. & Sci., 38, 516-523.
 
[23] Jacoby, P., Wu, J. & Heiden, M. (2000). “Thermoformable polypropylene- based sheet”, United States Patent, 5310584.
 
[24] Macauley, N., Harkin-Jones, E. & Murphy, W.R. (2007). “Method of assessing thermoformability of extruded polypropylene sheet, Plast”. Rubb. Composites Processing and Applications, 26, 165-171.
 
[25] Prosser, W., Hine, P.J. & Ward, I. M. (2000). “Investigation into thermoformability of hot compacted polypropylene sheet, Plast”. Rubb. and Composites, 29, 401-410.