[1] Sani, Y.M., Daud, W.M.A.W. & Abdul Aziz, A.R. (2014). “Activity of solid acid catalysts for biodiesel production: a critical review”, Appl. Catal. A: Gen. 470, 140-161 (Review).
[2] Xiong, Y., Zhang, Z., Wang, X., Liu, B. & Lin, J. (2014). “Hydrolysis of cellulose in ionic liquids catalyzed by a magnetically-recoverable solid acid catalyst”, Chem. Engin. J. 235, 349-355.
[3] Ghodke, S. & Chudasama, U. (2013). “Solvent free synthesis of coumarins using environment friendly solid acid catalysts”, Appl. Catal. A: Gen. 453 219-226.
[4] Moosavi-Zare, A.R., Zolfigol, M.A., Noroozizadeh, E., Tavasoli, M., Khakyzadeh, V. & Zare, A. (2013). “Synthesis of 6-amino-4-(4-methoxyphenyl)-5-cyano-3-methyl-1-phenyl-1,4-dihydropyrano [2,3-c] pyrazoles using disulfonic acid imidazolium chloroaluminate as a dual and heterogeneous catalyst”, New J. Chem. 37, 4089-4094.
[5] Khazaei, A., Zolfigol, M.A., Moosavi-Zare, A.R., Asgari, Z., Shekouhy, M., Zare, A. & Hasaninejad, A. (2012). “Preparation of 4,4´-(arylmethylene)-bis(3-methyl-1-phenyl-1H-pyrazol-5-ol)s over 1,3-disulfonic acid imidazolium tetrachloroaluminate as a novel catalyst”, RSC Adv. 2, 8010-8013.
[6] Moosavi-Zare, A.R., Rezaei, M., Merajoddin, M., Hamidian, H., Zare, A. & Kazem-Rostami, M. (2014). “Efficient synthesis of 9-aryl-1, 8-dioxo-octahydroxanthenes using melamine trisulfonic acid under thermal, microwave and ultrasound conditions”, Sci. Iran. C. 21, 2049-2058.
[7] Noroozizadeh, E., Moosavi-Zare, A.R., Zolfigol, M.A., Zare, A. & Zarei, M. (2017). “Friedel-Crafts alkylation of 4-hydroxycoumarin over silica-bonded 1,4-diaza-bicyclo[2.2.2] octane-sulfonic acid chloride as nanostructured heterogeneous catalyst”, Can. J. Chem. 95, 16-21.
[8] Mohammadi Ziarani, G., Lashgari, N. & Badiei, A. (2015). “Sulfonic acid-functionalized mesoporous silica (SBA-Pr-SO3H) as solid acid catalyst in organic reactions”, J. Mol. Catal. A: Chem. 397 166-191 (Review).
[9] Moosavi-Zare, A.R., Zolfigol, V., Khakyzadeh, M.A., Böttcher, C., Beyzavi, M.H., Zare, A., Hasaninejad, A. & Luque, R. (2014). “Facile preparation of a nanostructured functionalized catalytically active organosalt”, J. Mater. Chem. A. 2 770-777.
[10] Kefayati, H., Golshekan, M., Shariati, S. & Bagheri, M. (2015). “Fe3O4@MCM-48–SO3H: An efficient magnetically separable nanocatalyst for the synthesis of benzo[f]chromeno [2, 3-d] pyrimidinones”, Chin. J. Catal. 36 572-578.
[11] Ahmadi, T., Mohammadi Ziarani, G., Gholamzadeh, P. & Mollabagher, H. (2017). “Recent advances in asymmetric multicomponent reactions (AMCRs)”, Tetrahedron: Asym. 28 708-724.
[12] Zare, A., Yousofi, T. & Moosavi-Zare, A.R. (2012). “Ionic liquid 1,3-disulfonic acid imidazolium hydrogen sulfate: a novel and highly efficient catalyst for the preparation of 1-carbamatoalkyl-2-naphthols and 1-amidoalkyl-2-naphthols”, RSC Adv. 2 7988-7991.
[13] Mohammadi Zirani, G., Mousavi, S., Lashgari, N., Badiei, A. & Shakiba, M. (2013). “Application of Sulfonic Acid Functionalized Nanoporous Silica (SBA-Pr-SO3H) in the Green One-pot Synthesis of Polyhydroacridine Libraries”, Iran. J. Chem. Chem., Eng. 32 9-16.
[14] Zare A. & Nasouri, Z. (2016). “A green approach for the synthesis of 3, 4-dihydropyrimidin-2-(1H)-ones (and -thiones) using N, N-diethyl-N-sulfoethanaminium hydrogen sulfate”, J. Mol. Liq. 216 364-369.
[15] Wang, L.M., Sheng, J., Zhang, L., Han, J.W., Fan, Z.Y., Tian, H. & Qian, C.T. (2005). “Facile Yb(OTf)3 promoted one-pot synthesis of polyhydroquinoline derivatives through Hantzsch reaction”, Tetrahedron 61 1539-1543.
[16] Zarnegar, Z., Safari, J. & Mansouri-Kafroudi, Z. (2015). “Environmentally benign synthesis of polyhydroquinolines by Co3O4-CNT as an efficient heterogeneous catalyst”, Catal. Commun. 59 216-221.
[17] Karade, N.N., Budhewar, V.H., Shinde, S.V. & Jadhav, W.N. (2007). “L-Proline as an efficient organo-catalyst for the synthesis of polyhydroquinoline via multicomponent Hantzsch reaction”, Lett. Org. Chem. 4 16-24.
[18] Song, S.J., Shan, Z.X. & Jin, Y. (2010). “One-Pot Synthesis of Hexahydroquinolines via Hantzsch Four-Component Reaction Catalyzed by a Cheap Amino Alcohol”, Synth. Commun. 40 3067-3077.
[19] Ko S. & Yao, C.F. (2006). “Ceric ammonium nitrate (CAN) catalyzes the one-pot synthesis of polyhydroquinoline via the Hantzsch reaction”, Tetrahedron 62 7293-7299.
[20] Mohammadi Ziarani, G., Badiei, A.R., Khaniania, Y. & Haddadpour, M. (2010). “One Pot Synthesis of Polyhydroquinolines Catalyzed by Sulfonic Acid Functionalized SBA-15 as a New Nanoporous Acid Catalyst under Solvent Free Conditions”, Iran. J. Chem. Chem. Engin. 29 1-10.
[21] Zare, A., Abi, F., Moosavi-Zare, A.R., Beyzavi, M.H. & Zolfigol, M.A. (2013). “Synthesis, characterization and application of ionic liquid 1,3-disulfonic acid imidazolium hydrogen sulfate as an efficient catalyst for the preparation of hexahydroquinolines”, J. Mol. Liq. 178 113-121.
[22] Rostamnia, S., Hassankhani, A., Golchin Hossieni, H., Gholipour, B. & Xin, H. (2014). “Brønsted acidic hydrogensulfate ionic liquid immobilized SBA-15: [MPIm] [HSO4] @SBA-15 as an environmentally friendly, metal- and halogen-free recyclable catalyst for Knoevenagel–Michael-cyclization processes”, J. Mol. Catal. A: Chem. 395 463-469.
[23] Surasani, R., Kalita, D., Rao, A.V.D., Yarbagi, K. & Chandrasekhar, K.B. (2012). “FeF3 as a novel catalyst for the synthesis of polyhydroquinoline derivatives via unsymmetrical Hantzsch reaction”, J. Fluor. Chem. 135 91-96.
[24] M.R. Poor-Heravi, S. Mehranfar, N. Shabani, One-pot multicomponent synthesis hexahydroquinoline derivatives in Triton X-100 aqueous micellar media, C. R. Chim. 17 (2014) 141-145.
[25] Nasr-Esfahani, M., Hoseini, S.J., Montazerozohori, M., Mehrabi, R. & Nasrabadi, H. (2014). “Magnetic Fe3O4 nanoparticles: Efficient and recoverable nanocatalyst for the synthesis of polyhydroquinolines and Hantzsch 1, 4-dihydropyridines under solvent-free conditions”, J. Mol. Catal. A: Chem. 382 99-105.
[26] Phukan, S., Saha, M., Pal, A.K. & Mitra, S. (2013). “Synthesis and fluorescence behavior of photoactive polyhydroquinoline derivatives: A combined experimental and DFT study”, J. Mol. Struct. 1039 119-129.
[27] Godfraid, T., Miller, R. & Wibo, M. (1986). “Calcium Antagonism and Calcium Entry Blockade”, Pharmocol. Rev. 38 321-416.
[28] Sausins A. & Duburs, G. (1988). “Synthesis of 1,4-Dihydropyridines by Cyclocondensation Reactions”, Heterocycles 27 269-289.
[29] Mannhold, R., Jablonka, B., Voigt, W., Schonafinger, K. & Schraven, K. (1992). “Calcium- and calmodulin-antagonism of elnadipine derivatives: a comparison of structure-activity relationships”, Eur. J. Med. Chem. 27 229-235.
[30] Bossert, F., Meyer, H. & Wehinger, E. (1981). 4-“Aryldihydropyridines, a New Class of Highly Active Calcium Antagonists”, Angew. Chem., Int. Ed. Engl. 20 762-769.
[31] Nakayama H. & Kasoaka, Y. (1996). “Chemical Identification of Binding Sites for Calcium Channel Antagonists”, Heterocycles 42 901-909.
[32] Klusa, V. (1995). “Cerebrocrast, Neuroprotectant, Cognition Enhancer”, Drugs Future 20 135-138.
[33] Boer R. & Gekeler, V. (1995). “Chemosensitizers in Tumor Therapy: New Compounds Promise Better Efficacy”, Drugs Future 20 499-509.
[34] Zare A. & Reghbat, F. (2016). “Preparation, characterization and the use of sulfonic acid-functionalized phthalimide (SFP) as a highly efficient and green catalyst for the condensation of arylaldehydes with 2-naphthol”, Iran. J. Catal. 6 113-119.