Investigation of Electronic and Spectral Properties of Nitrene Intermediates Produced by Thermal Decomposition of Cyanuric Triazide Explosive using DFT and MP2 Calculations

Document Type : Research Paper

Author

Assistant professor of Department of organic chemistry, Damghan University, Iran.

Abstract

Cyanuric triazide (C3N12) is an environmentally friendly and low toxicity organic primary explosive. Thermal decomposition of this compound produces a number of nitrene intermediates, which identification of these compounds is important for discovery of highly reactive energetic molecules. In this paper, density functional theory (DFT) B3LYP/6-311++G(2d,p) method and second order Møller-Plesset perturbation theory MP2/6-311++G(2d,p) were used to study structure, stability and prediction of electronic and spectral properties of these intermediates. These results were compared with experimental data reported for some of these compounds. According to the results, nitrene intermediate 1 (C3N10) has triplet spin multiplicity in its most stable state; while nitrene intermediates 2 (C3N8) and 3 (C3N6) are more stable in quintet and septet spin multiplicities, respectively. The calculated molecular orbital diagrams, infrared (IR) and nitrogen-15 nuclear magnetic resonance (15N NMR) spectra provide useful information for identification of these compounds. Strong absorption bands related to in-plane vibrations of triazine ring in IR spectra of nitrene intermediates 1-3 were shifted to lower frequencies than that for cyanuric triazide molecule. Also, absorption bands related to vibrations of azide group in IR spectrum of nitrene intermediate 3 were completely disappeared. The 15N NMR spectrum of cyanuric triazide has four different chemical shifts in 134, 248, 257, and 271 ppm. The peak appearing in 248 ppm is related to nitrogen atoms of the triazine ring and others are related to nitrogen atoms of azide group. A new peak for nitrogen atom of nitrene substituent appeared at about 450 ppm in nitrene intermediates 1-3.

Keywords


[1] Agrawal, J.P. (2010). “High Energy Materials: Propellants, Explosives and Pyrotechnics”. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.
[2] Brinck, T. (2013). “Green Energetic Materials”. Chichester: John Wiley & Sons, Ltd.
 
[3] Matyas, R. & Pachman, J. (2013). “Primary Explosives”. Berlin: Heidelberg Springer-Verlag.
 
[4] Agrawal, J.P. & Hodgson, R.D. (2007). “Organic Chemistry of Explosives”. Chichester: John Wiley & Sons Ltd.
 
[5] Nedel’ko, V.V. Korsunskii, B.L. Larikova, T.S. Chapyshev, S.V. Chukanov, N.V. Yuantsze, S. Thermal decomposition of 2,4,6-triazido-1,3,5-triazine, Russ. J. Phys. Chem. B 10 (2016) 570-575.
 
[6] Sato, T. Narazaki, A. Kawaguchi, Y. Niino, H. Bucher, G. Grote, D. Jens Wolff, J. Henning Wenk, H. Sander, W. Generation and Photoreactions of 2,4,6-Trinitreno-1,3,5-triazine, a Septet Trinitrene, J. Am. Chem. Soc. 126 (2004) 7846-7852.
 
[7] Singh, M.S. (2014), “Reactive Intermediates in Organic Chemistry: Structure, Mechanism, and Reactions”. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.
 
[8] Chapyshev, S. V. Six-membered aromatic polyazides: Synthesis and application, Molecules 20 (2015) 19142-19171.
 
[9] Abe, M. Bégué, D. Santos Silva, H. Dargelos, A. Wentrup, C. Triplet states of tetrazoles, nitrenes, and carbenes from matrix photolysis of tetrazoles, and phenylcyanamide as a source of phenylnitrene, J. Phys. Chem. A 122 (2018) 7276-7283.
 
[10] Wentrup, C. Flash Vacuum Pyrolysis of Azides, Triazoles, and Tetrazoles, Chem. Rev. 117 (2017) 4562-4623.
 
[11] Bachrach. S.M. (2014). “Computational Organic Chemistry”. New Jersey: John Wiley & Sons Inc.
 
[12] Zamani, M. Keshavarz, M.H. Thermochemical and detonation performances of boron-nitride analogues of organic azides and benzotrifuroxan as novel high energetic nitrogen-rich precursors, J. Iran. Chem. Soc. 12 (2015) 1077-1087.
 
[13] Zamani, M. Keshavarz, M.H. New NHNO2 substituted borazine-based energetic materials with high detonation performanc, Comput. Mater. Sci. 97 (2015) 295-303.
 
[14] Zamani, M. Keshavarz, M.H. Thermochemical and performance properties of NO2 substituted borazines as new energetic compounds with high thermodynamic stability, Cent. Eur. J. Energ. Mater. 11 (2014) 363-381.
 
[15] مهدی، ز. مطالعه ترمودینامیکی واکنش‌های تجزیه ماده منفجره سیانوریک-تری‌آزید با استفاده از نظریه تابعی چگالی. نشریه شیمی و مهندسی شیمی ایران، (1398) زیر چاپ (http://www.nsmsi.ir/article_36989 .html).
 
[16] Frisch, M.J. Trucks, G.W. Schlegel, H.B. Scuseria, G.E. et al. (2013). “Gaussian 09, Revi sion D.01”. Wallingford CT: Gaussian Inc.
 
[17] Cheeseman, J.R. Trucks, G.W. Keith, T.A. Frisch, M.J. comparison of models for calculating nuclear magnetic resonance shielding tensors, J. Chem. Phys. 104 (1996) 5497.
 
[18] Reimschuessel, H.K. McDevitt, N.T. Infrared spectra of some 1, 3, 5-triazine derivatives, J. Am. Chem. Soc. 82 (1960) 3756-3762.
 
[19] Shearer, S.J. Turrell, G.C. Bryant, J.I. Brooks III, R.L. Vibrational Spectra of Cyanuric Triazide, J. Chem. Phys. 48 (1968) 1138.
 
[20] Silverstein, R.M. Webster, F.X. Kiemle, D.J. (2005), “Spectrometric identification of organic compounds”. New York: John Wiley & Sons Ine. 7th Ed.