Application of Phthalimide N-Sulfonic Acid as a Highly Efficient Catalyst for the Multicomponent reaction of Dimedone with Arylaldehydes, β-Ketoesters and Ammonium Acetate

Document Type : Research Paper

Authors

1 Phd Student of Chemistry, Payame Noor University, Iran.

2 Associate Professor of Organic Chemistry, Payame Noor University, Iran.

Abstract

In recent years, development of heterogeneous, easily recyclable and environmentally benign catalysts for synthesis of fine chemicals has attracted much attention. Solid acids are certainly an important class of the above-mentioned catalysts which have been used to promote different organic transformations. Catalytic activity of solid acids depends on their strength and number of acidic sites, and Lewis/Brønsted acidity. The advantages of application of solid acid catalysts in organic synthesis can summarize as follow: product isolation is simplified, reaction often performs under milder conditions, reaction selectivity often increases, atom efficiency of reaction is improved, the process is simplified, precious raw materials used for preparation of the catalysts are given increased lifetime (through reuse), volume of waste is significantly reduced, and process is in agreement with the green chemistry protocols. In this work, solid acid phthalimide N-sulfonic acid has been utilized as a highly efficient, heterogeneous and green catalyst for the one-pot multi-component condensation of dimedone with arylaldehydes, β-ketoesters and ammonium acetate under solvent-free conditions to afford polyhydroquinolines in excellent yields and in short reaction times.

Keywords


[1] Sani, Y.M., Daud, W.M.A.W. & Abdul Aziz, A.R. (2014). “Activity of solid acid catalysts for biodiesel production: a critical review”, Appl. Catal. A: Gen. 470, 140-161 (Review).
 
[2] Xiong, Y., Zhang, Z., Wang, X., Liu, B. & Lin, J. (2014). “Hydrolysis of cellulose in ionic liquids catalyzed by a magnetically-recoverable solid acid catalyst”, Chem. Engin. J. 235, 349-355.
 
[3] Ghodke, S. & Chudasama, U. (2013). “Solvent free synthesis of coumarins using environment friendly solid acid catalysts”, Appl. Catal. A: Gen. 453 219-226.
 
[4] Moosavi-Zare, A.R., Zolfigol, M.A., Noroozizadeh, E., Tavasoli, M., Khakyzadeh, V. & Zare, A. (2013). “Synthesis of 6-amino-4-(4-methoxyphenyl)-5-cyano-3-methyl-1-phenyl-1,4-dihydropyrano [2,3-c] pyrazoles using disulfonic acid imidazolium chloroaluminate as a dual and heterogeneous catalyst”, New J. Chem. 37, 4089-4094.
 
[5] Khazaei, A., Zolfigol, M.A., Moosavi-Zare, A.R., Asgari, Z., Shekouhy, M., Zare, A. & Hasaninejad, A. (2012). “Preparation of 4,4´-(arylmethylene)-bis(3-methyl-1-phenyl-1H-pyrazol-5-ol)s over 1,3-disulfonic acid imidazolium tetrachloroaluminate as a novel catalyst”, RSC Adv. 2, 8010-8013.
 
[6] Moosavi-Zare, A.R., Rezaei, M., Merajoddin, M., Hamidian, H., Zare, A. & Kazem-Rostami, M. (2014). “Efficient synthesis of 9-aryl-1, 8-dioxo-octahydroxanthenes using melamine trisulfonic acid under thermal, microwave and ultrasound conditions”, Sci. Iran. C. 21, 2049-2058.
 
[7] Noroozizadeh, E., Moosavi-Zare, A.R., Zolfigol, M.A., Zare, A. & Zarei, M. (2017). “Friedel-Crafts alkylation of 4-hydroxycoumarin over silica-bonded 1,4-diaza-bicyclo[2.2.2] octane-sulfonic acid chloride as nanostructured heterogeneous catalyst”, Can. J. Chem. 95, 16-21.
 
[8] Mohammadi Ziarani, G., Lashgari, N. & Badiei, A. (2015). “Sulfonic acid-functionalized mesoporous silica (SBA-Pr-SO3H) as solid acid catalyst in organic reactions”, J. Mol. Catal. A: Chem. 397 166-191 (Review).
 
[9] Moosavi-Zare, A.R., Zolfigol, V., Khakyzadeh, M.A., Böttcher, C., Beyzavi, M.H., Zare, A., Hasaninejad, A. & Luque, R. (2014). “Facile preparation of a nanostructured functionalized catalytically active organosalt”, J. Mater. Chem. A. 2 770-777.
 
[10] Kefayati, H., Golshekan, M., Shariati, S. & Bagheri, M. (2015). “Fe3O4@MCM-48–SO3H: An efficient magnetically separable nanocatalyst for the synthesis of benzo[f]chromeno [2, 3-d] pyrimidinones”, Chin. J. Catal. 36 572-578.
 
[11] Ahmadi, T., Mohammadi Ziarani, G., Gholamzadeh, P. & Mollabagher, H. (2017). “Recent advances in asymmetric multicomponent reactions (AMCRs)”, Tetrahedron: Asym. 28 708-724.
 
[12] Zare, A., Yousofi, T. & Moosavi-Zare, A.R. (2012). “Ionic liquid 1,3-disulfonic acid imidazolium hydrogen sulfate: a novel and highly efficient catalyst for the preparation of 1-carbamatoalkyl-2-naphthols and 1-amidoalkyl-2-naphthols”, RSC Adv. 2 7988-7991.
 
[13] Mohammadi Zirani, G., Mousavi, S., Lashgari, N., Badiei, A. & Shakiba, M. (2013). “Application of Sulfonic Acid Functionalized Nanoporous Silica (SBA-Pr-SO3H) in the Green One-pot Synthesis of Polyhydroacridine Libraries”, Iran. J. Chem. Chem., Eng. 32 9-16.
 
[14] Zare A. & Nasouri, Z. (2016). “A green approach for the synthesis of 3, 4-dihydropyrimidin-2-(1H)-ones (and -thiones) using N, N-diethyl-N-sulfoethanaminium hydrogen sulfate”, J. Mol. Liq. 216 364-369.
 
[15] Wang, L.M., Sheng, J., Zhang, L., Han, J.W., Fan, Z.Y., Tian, H. & Qian, C.T. (2005). “Facile Yb(OTf)3 promoted one-pot synthesis of polyhydroquinoline derivatives through Hantzsch reaction”, Tetrahedron 61 1539-1543.
 
[16] Zarnegar, Z., Safari, J. & Mansouri-Kafroudi, Z. (2015). “Environmentally benign synthesis of polyhydroquinolines by Co3O4-CNT as an efficient heterogeneous catalyst”, Catal. Commun. 59 216-221.
 
[17] Karade, N.N., Budhewar, V.H., Shinde, S.V. & Jadhav, W.N. (2007). “L-Proline as an efficient organo-catalyst for the synthesis of polyhydroquinoline via multicomponent Hantzsch reaction”, Lett. Org. Chem. 4 16-24.
 
[18] Song, S.J., Shan, Z.X. & Jin, Y. (2010). “One-Pot Synthesis of Hexahydroquinolines via Hantzsch Four-Component Reaction Catalyzed by a Cheap Amino Alcohol”, Synth. Commun. 40 3067-3077.
 
[19] Ko S. & Yao, C.F. (2006). “Ceric ammonium nitrate (CAN) catalyzes the one-pot synthesis of polyhydroquinoline via the Hantzsch reaction”, Tetrahedron 62 7293-7299.
[20] Mohammadi Ziarani, G., Badiei, A.R., Khaniania, Y. & Haddadpour, M. (2010). “One Pot Synthesis of Polyhydroquinolines Catalyzed by Sulfonic Acid Functionalized SBA-15 as a New Nanoporous Acid Catalyst under Solvent Free Conditions”, Iran. J. Chem. Chem. Engin. 29 1-10.
 
[21] Zare, A., Abi, F., Moosavi-Zare, A.R., Beyzavi, M.H. & Zolfigol, M.A. (2013). “Synthesis, characterization and application of ionic liquid 1,3-disulfonic acid imidazolium hydrogen sulfate as an efficient catalyst for the preparation of hexahydroquinolines”, J. Mol. Liq. 178 113-121.
 
[22] Rostamnia, S., Hassankhani, A., Golchin Hossieni, H., Gholipour, B. & Xin, H. (2014). “Brønsted acidic hydrogensulfate ionic liquid immobilized SBA-15: [MPIm] [HSO4] @SBA-15 as an environmentally friendly, metal- and halogen-free recyclable catalyst for Knoevenagel–Michael-cyclization processes”, J. Mol. Catal. A: Chem. 395 463-469.
 
[23] Surasani, R., Kalita, D., Rao, A.V.D., Yarbagi, K. & Chandrasekhar, K.B. (2012). “FeF3 as a novel catalyst for the synthesis of polyhydroquinoline derivatives via unsymmetrical Hantzsch reaction”, J. Fluor. Chem. 135 91-96.
 
[24] M.R. Poor-Heravi, S. Mehranfar, N. Shabani, One-pot multicomponent synthesis hexahydroquinoline derivatives in Triton X-100 aqueous micellar media, C. R. Chim. 17 (2014) 141-145.
 
[25] Nasr-Esfahani, M., Hoseini, S.J., Montazerozohori, M., Mehrabi, R. & Nasrabadi, H. (2014). “Magnetic Fe3O4 nanoparticles: Efficient and recoverable nanocatalyst for the synthesis of polyhydroquinolines and Hantzsch 1, 4-dihydropyridines under solvent-free conditions”, J. Mol. Catal. A: Chem. 382 99-105.
 
[26] Phukan, S., Saha, M., Pal, A.K. & Mitra, S. (2013). “Synthesis and fluorescence behavior of photoactive polyhydroquinoline derivatives: A combined experimental and DFT study”, J. Mol. Struct. 1039 119-129.
 
[27] Godfraid, T., Miller, R. & Wibo, M. (1986). “Calcium Antagonism and Calcium Entry Blockade”, Pharmocol. Rev. 38 321-416.
 
[28] Sausins A. & Duburs, G. (1988). “Synthesis of 1,4-Dihydropyridines by Cyclocondensation Reactions”, Heterocycles 27 269-289.
 
[29] Mannhold, R., Jablonka, B., Voigt, W., Schonafinger, K. & Schraven, K. (1992). “Calcium- and calmodulin-antagonism of elnadipine derivatives: a comparison of structure-activity relationships”, Eur. J. Med. Chem. 27 229-235.
[30] Bossert, F., Meyer, H. & Wehinger, E. (1981). 4-“Aryldihydropyridines, a New Class of Highly Active Calcium Antagonists”, Angew. Chem., Int. Ed. Engl. 20 762-769.
 
[31] Nakayama H. & Kasoaka, Y. (1996). “Chemical Identification of Binding Sites for Calcium Channel Antagonists”, Heterocycles 42 901-909.
 
[32] Klusa, V. (1995). “Cerebrocrast, Neuroprotectant, Cognition Enhancer”, Drugs Future 20 135-138.
 
[33] Boer R. & Gekeler, V. (1995). “Chemosensitizers in Tumor Therapy: New Compounds Promise Better Efficacy”, Drugs Future 20 499-509.
 
[34] Zare A. & Reghbat, F. (2016). “Preparation, characterization and the use of sulfonic acid-functionalized phthalimide (SFP) as a highly efficient and green catalyst for the condensation of arylaldehydes with 2-naphthol”, Iran. J. Catal. 6 113-119.