Synthesis of Azo Containing Bis Coumarinyl Methanes Using [BDBDMIm]HSO4 Ionic Lliquid at Room Temperature

Document Type : Research Paper

Authors

1 Associate Professor, Department of Chemistry, Rasht Branch, Islamic Azad University, Rasht, Iran

2 Assistant Professor, Department of Chemistry, Payame noor University, Tehran, Iran

Abstract

An environmentally benign, new, simple and effective protocol for the synthesis of azo-Linked bis coumarinyl methanes by a nucleophilic addition reaction of one equivalent of synthesized aldehydes and two equivalents of 4-hydroxy coumarins in the presence of 3,3'-(butane-1,4-diyl)bis(1,2-dimethyl-1H-imidazol-3-ium) hydrogen sulfate ([BDBDMIm]HSO4) as a novel and efficient ionic liquid under stirring in room temperature is reported. All reactions are performed in the absence of solvent in high to excellent yield during short reaction times. Further, the ionic liquid can be reused and recovered for several times without loss of activity. This work consistently has the other advantages such as mild reaction conditions, green chemical media, excellent yields, short reaction times and simple work-up procedures. Different derivatives of azo-Linked bis coumarinyl methanes consist of electron withdrawing groups or electron releasing groups were synthetized and all of them were characterized by their physical constant, IR, 1H NMR, 13C NMR spectroscopy and elemental analysis.

Keywords


[1] Y. Zhou, T. Kijima, S. Kuwahara, M. Watanabe, T. Izumi, Tetrahedron Lett. 49 (2008) 3757.
           
[2] R.O.Kennedy, R.D. Thornes, Coumarins: Biology, Applications and Mode of Action; John Wiley and Sons: Chichester (1997) 360 pages, ISBN: 978-0-471-96997-6.
 
[3] M. Zabradnik, The Production and Application of Fluorescent Brightening Agents; John Wiley and Sons: New York (1992).
 
[4] R.D.H. Murray, J. Mendez, S.A. Brown, The Natural Coumarins: Occurrence, Chemistry and Biochemistry; John Wiley and Sons: New York, (1982).
 
[5] S.A. Rodroguez, M.A. Nazareno, M.T. Baumgartner,  Bioorg. Med. Chem. 19 (2011) 6233.
 
[6] J. Jung, J. Lee, S. Oh, J. Leed, O. Park. Bioorg. Med. Chem. Lett. 14 (2004) 5527.
 
[7] M. Khoobia, L. Ma’mania, F. Rezazadehb, Z. Zareieb, A. Foroumadia, A. Ramazanib, A. Shafieec, J. Mol. Catal. A: Chem. 359 (2012) 74.
 
[8] M.R. Yazdanbakhsh, H. Yousefi, M. Mamaghani, E.O. Moradi, M. Rassa, H. Pouramir, M. Bagheri,  J. Mol. Liq. 169 (2012) 21.
 
[9] P. Walden, Bull. Acad. Imp. Sci. St. Petersburg. (1914) 405.
 
[10] N.V. Plechkova, K.R. Seddon, Chem. Rev. 37 (2008) 123.
 
[11] P.A.Z. Suarez, J.J. Dupont, Chim. Phys. 95 (1998) 1626.
 
[12] D.J. Adams, P. Dyson, S.T. Taverner, Chemistry in Alternative Reaction Media. John Wiley & Sons Ltd. (2004).
 
[13] M.J. Earle, K.R. Seddon, Pure Appl. Chem. 72 (2000) 1391.
 
[14] N.V. Plechkova, K.R. Seddon, Chem. Rev. 37 (2008) 123.
 
[15] V.I. Parvulescu, C. Hardacre, Chem. Rev. 107 (2007) 2625.
 
[16] M. Nikpassand, L. Zare Fekri M.R. Mousavi, Lett. Org. Chem. 9 (2012) 375.
 
[17] M. Nikpassand, L. Zare Fekri, P. Farokhian, Synth. Commun. 45 (2015) 2303.
 
[18] L. Zare Fekri, M. Nikpassand, K. Hassanpour, Curr. Org. Chem. 12 (2015) 76.
 
[19] M. Nikpassand, M. Mamaghani, F. Shirini, K. Tabatabaeian, Ultrason. Sonochem. 17 ;(2010). 301.
 
[20] M. Nikpassand, M. Mamaghani, F. Shirini, K. Tabatabaeian, Ultrason. Sonochem. 17 (2010) 301.
 
[21] M. Nikpassand, L. Zare, M. Saberi, Monatsh. Chem. 143 (2012) 289.