Biotransformation of α-Santonin to 1,2-dihydrosantonin using Trichoderma virens

Document Type : Research Paper

Authors

Department of organic and inorganic Chemistry, Shahid Beheshti University, G.C- P. O. Box 1983969411, Tehran, Iran

Abstract

Considering the unique characteristics of biocatalysts, including their non-toxic nature and biodegradability, these catalysts are suitable candidates for reactions such as oxidation, reduction, hydrolysis and etc. On the other hand, considering the importance of natural compounds and the need to create structural modifications in them in order to obtain compounds with higher medicinal properties, these compounds can be suitable substrates for biocatalysts.
Therefore, in this research, the biotransformation of the α-Santonin by Trichoderma virens was investigated. After 12 days, the reaction was collected and the product was isolated. After identifying the product using 1HNMR and 13CNMR and comparing it with previous articles, 1,2-dihydrosantonin was identified as the dominant product with a yield of 47.3%. Reduction of the carbon-carbon double bonds using chemical methods requires the use of metal catalysts and hydrogen gas, but in the present study, T. virens species showed high catalytic ability in reducing the carbon-carbon double bond.

Keywords


[1] Chadwick M., Trewin H., Gawthrop F., Wagstaff C., Int. J. Mol. Sci., 2013, 14, 12780-12805.
 
[2] Wang J., Su S., Zhang S., Zhai S., Sheng R., Wu W., Guo R., Eur. J. Med. Chem., 2019, 175, 215-233.
 
[3] Faber K., Biotransformations in organic chemistry: a textbook., Springer, Heidelberg, 2011, 6th edition.
 
[4] Gandomkar S., Habibi Z., J. Mole. Catal. B: Enzym., 2014, 110, 59–63.
 
[5] Colaco D., Furtado I., Naik U., Mavinkurve S., Paknikar S., Lett. Appl. Microbiol., 1993, 17, 212–214.
 
[6] Bustos D., A. Re. Org. Chem., 2012, 2, 1–6.
 
[7] Hegazy M. E. F., Kuwata C., Matsushima A., Ahmed A. A., Hirata T., J. Mole. Catal. B: Enzym., 2006, 39, 13–17.
 
[8] Kutney JP., Singh AK., Can. J. Chem., 1984, 62, 2813-2817.
 
[9] Iida M., Hatori Y., Yamakawa K., Iizuka H., Z. Allg. Mikrobiol., 1981, 21, 587–590.
 
[10] Lamm A. S., Chen A. R., Reynolds W. F., Reese P. B., J. Mole. Catal B: Enzym., 2009, 59, 292–296.
 
[11] Iida M., Mikami A., Yamakawa K., Nishitani K., J. Ferment. Technol., 1988, 66, 51–55.
 
[12] Ata A., Nachtigall J. A., Z. Naturforsch. C. Bio. Sci., 2004, 59, 209–214.
 
[13] Yang L., Dai J. g., Sakai J.I., Ando M., J. Asian. Nat. Prod. Res., 2006, 8, 317–326.
 
[14] Yang L., Dai J., Sakai J., Ando M., Biotechnol. Lett., 2005, 27, 793–797.
 
[15] El-Feraly F., Benigni D., McPhail A., J. Chem. Soc., Perkin Trans., 1983, 1, 355–364.
 
[16] Blay G., Cardona L., Garcia B., Pedro JR., Studies in Natural Products Chemistry. 2000, 24, 53-129.
 
[17] Otoguro K., Iwatsuki M., Ishiyama A., Namatame M., Nishihara-Tukashima A., Kiyohara H., Hashimoto T., Asakawa Y., Ōmura S., Yamada H., Phytochemistry., 2011, 72, 2024–2030.